Для студентів 4 курсу

Прилади і методи дослідження плівкових матеріалів

-07	Возбудитель							
Носитель инфор- мации	Фотоны, ү-кванты	Электроны, позитроны	ионы 1005	Нейтральные частицы	Электричес- кое поле, нагрев			
Фотоны, у-Кванты	MCП (MOSS) ГАА ИКСП (IRS) РФА (XFA)	ЭМЗ (EMP) СППНР (SXAPS) ЭПА (EPA)	ИРС (IIXS) СИВЧ (CDOS) ААЗЧ МЯР (PNA)	СИВЧ (CDOS) СФСНЧ	AJC (FEES)			
Электроны	УФЭС (UPS) РФЭС (XPS), или ЭСХА (ESCA) ФЭЭ (PEE) ГАА	OЭC (AES) ДМЭ (LEED) ИС (IS) РЭМ (SEMS) СППОЭ (AEAPS)	ИНС (INS) ИЭЭ (IEE) ИОС (AIS)	HAA (PNA) AA CREATER AA CREATER AA CREATER A A A A A A A A A A A A A A A A A A A	AЭM (FEM) MKPП (CPO) MAЭРВ (FEWF)			
ной норога обн биаружен типа и эне кончаб точена о	ЛМС (LMS) ФД (FD)	ЭЗМС (EPMS)	ВИМС (SIMS) СИР СРМИ (ISS) POP (RBS) MЯР (PNA)	MAP (PNA)	АИМ (FIM) МСИИ (SMS) МПИ (SIS)			
Нейтраль- ные частицы	ФД (PD)	ЭСД (ESD)	nioro ofips nitro ofips nitro ofips	МРМП (MBSS) МЯР (PNA)	АЗ (APS) ТСД (TSD)			

РОЗДІЛ 1. ЕЛЕКТРОННО-МІКРОСКОПІЧНІ ТА ДИФРАКЦІЙНІ МЕТОДИ ДОСЛІДЖЕНЬ

 $= h / m_0 \upsilon$

У 1924 році Л. де Бройль уперше висунув гіпотезу про те, що корпускулярно-хвильова природа фотонів є універсальною властивістю всіх матеріальних тіл. Довжина хвилі мікрочастинки чи макроскопічного об'єкта визначається однією і тією самою формулою
 λ= h/mov

де *m*₀ і v – маса спокою і швидкість частинки.

Якщо λ розрахувати в Å, а v – в В, то попередня формула спрощується до вигляду $\lambda = (150/U) \frac{1}{2}$

- У зв'язку із хвильовими властивостями електронів вони, як і фотони, можуть утворити картини дифракції та інтерференції, що стало методологічною основою створення електронно-оптичних приладів (ПЕМ, РЕМ, електронографи).
- Перший ПЕМ з магнітними лінзами запропонували німецькі інженери М. Кноль і Е. Руска. За створення ПЕМ Е. Руска в 1986 р. отримав Нобелівську премію разом із Біннінгом і Рорером, які винайшли АСМ.

- У сучасних ПЕМ частіше за все використовуються режими роботи для отримання світлопольного і темнопольного зображень кристалічної структури, для зображення решітки з фазовим контрастом, а також у режимі дифракції та мікродифракції. Останні два режими можуть бути реалізовані за допомогою відбитих або тих, що пройшли через зразок, електронів.
- ПЕМ можна прокласифікувати за величиною прискорюючої напруги: високовольтні (до 200 кВ) і надвисоковольтні (порядку 1 МВ). У зв'язку із дороговизною надвисоковольтних ПЕМ на даний момент їх налічується у світі декілька екземплярів. До числа основних характеристик (параметрів) ми будемо відносити прискорюючу напругу, розрізнювальну здатність (хоча, як зауважили ми раніше, вони пов'язані між собою) та діапазон збільшень (*M*).

1.4. Формування зображення в ПЕМ

Типи мікроскопічних контрастів

Механізми формування зображення в оптичному і ПЕМ різні: оптична система людського ока формує зображення завдяки сприйманню випромінених чи відбитих об'єктом оптичних променів, а магнітна система ПЕМ формує зображення шляхом фокусування пучка електронів. Тому фундаментальною проблемою ПЕМ є теорія мікроскопічного зображення, або т.зв. теорія контрастів на зображенні.

Тіньовий контраст

Рис. 1.8. Ілюстрація формування зображення тіньовим

контрастом малих частинок Sn (a) та кристалітів ГЦК-Со, які утворилися у матриці ГЩП-Со з малою ефективною товщиною (б). Зображення областей ГЩП-Со сформовано завдяки дифракційному контрасту

Дифракційний контраст

Рис. 1.9. – Схематична будова великокутової двійникової межі зерен (а) і мікроскопічне зображення двійників у монокристалічних плівках Ві (б): І, ІІ – номери зерен; d1, d2 – міжплощинні відстані (d1 2d2); ○, • – атоми І і ІІ зерен відповідно

 Рисунок 1.10 – Схема формування зображення кристалітів дифракційним контрастом: 1 – первинний пучок електронів інтенсивністю І₀; 2 – полікристалічний зразок; 3 – промені, які пройшли через зразок; 4 – промені, відсічені об'єктивною діафрагмою (5); 6 – екран із зображенням. Дифракційний контраст виникає завдяки променям 3 і 4

Рисунок 1.11 – Формування контурів екстинції у монокристалічних плівках: а – схематичне зображення сформоване променями 1' - 1''' інтерференційної картини при багатократному відбиванні електронних хвиль від поверхонь монокристалу (1), якісна залежність інтенсивності максимумів від відстані від нульового максимуму (2) і схематичне зображення контурів екстинції у монокристалі неоднорідного за товщиною (3) та однорідного за товщиною, але зігнутого (4); б – мікрознімок монокристалічної плівки Ві з контурами екстинції в окремих монокристалах

Рисунок 1.12 – Утворення і спостереження ДП у плівкових матеріалах: а – бездефектне чергування кристалографічних площин; б – утворення ДП віднімання в результаті "зникнення" площин ВСА в кристалі; в – утворення ДП впровадження в результаті "появи"двох зайвих площин ВВ; г – ДП термічного походження Рис. 1.13 - Дифракційний контраст на крайових і гвинтових дислокаціях: а – дислокаційна стінка; б – ліс дислокацій; в – зображення дислокацій при I > d; г – візуалізація крайової

дислокації

Рисунок 1.14 – Контраст від механічних напружень у зернах ГЦК-Со, обумовлених утворенням зерен ГЩП-Со з більшою густиною

Рисунок 1.15 – Формування муарових візерунків на мікрознімках: а, г –

схема кристалічної будови двошарової системи і відповідна картина муарового візерунка при паралельній (а, б) і поворотній орієнтації (в, г); д – муарові візерунки у системі Sc2O3/ScH2, в якій параметри решітки різняться удвічі (aSc2O3 ≅ 2aScH2); ∘, • – атоми верхнього і нижнього

шарів.

Амплітудно-фазовий контрасти

Рисунок 1.16 – Формування зображення кристалографічних площин і атомів за допомогою фазового контрасту: а – частинки Ag діаметром 3 нм (збільшення M = 7·105); б – монокристалічна плівка Si (M = 106, прилад ПЕМ-125); в – моношар атомів Си на підкладці із

плівки вуглецю (M = 100·106)

1.4. Основи растрової електронної мікроскопії (РЕМ)

Скануючий растровий мікроскоп складається із стенда, на якому змонтовані колона, система управління і реєстрування інформації; вакуумної системи та блока живлення. Для отримання в РЕМ інформації пучок електронів, сформований освітлювальною системою (до великої міри аналогічної до ПЕМ), фокусується в певному місці зразка. Він характеризується трьома основними параметрами: сила струму (*i* = 10-12 – 10-16 A), діаметр (d = 5 μ – 1 μ κ) і кут його розходження (α = 10-4 – 10-2 ст.рад.), які тісно пов'язані між собою і входять в основні співвідношення растрової мікроскопії.

В області взаємодії пучка електронів з речовиною відбувається пружна і непружна взаємодія, яка спричиняє генерацію різних випромінювань (або сигналів для детекторів): пружні, вторинні, поглинуті й ті, що пройшли зразок, електрони; характеристичне і гальмівне (безперервне) рентгенівське випромінювання та катодолюмінісцентне випромінювання. Фіксуючи величину (інтенсивність) цих сигналів, можна визначити певні характеристики об'єкта дослідження: локальну топографію, хімічний склад, енергетичні властивості напівпровідникового зразка і т.д. Для дослідження зразка по всій поверхні здійснюється сканування пучка вздовж осей Х і Ү за допомогою електромагнітних котушок.

Типи контрастів у РЕМ

- Стосовно РЕМ означення контрасту (С) можна сформулювати таким чином: C=(S2-S1/S2)
- де S інтенсивність сигналу, а 0 ≤ C≤ 1.
- Формування зображення в РЕМ здійснюється за допомогою двох типів контрастів – залежного від атомного номера контрасту (інші назви: контраст хімічного складу, Z-контраст, де Z – порядковий номер елемента) та топографічного контрасту, які мають по два механізми або режими реалізації. Перший механізм формування Z-контрасту реалізується за допомогою пружно відбитих електронів. Суть механізму пояснено на рис. 1.14. Спочатку розглянемо електронні потоки, які випромінюються за двох (1 і 2) положень електронного пучка, однокомпонентним зразком.

Рисунок 1.17 – Механізм формування Z-контрасту пружно розсіяними електронами: а – однокомпонентний зразок; б – зразок із різним хімічним складом у точках 1 і 2

Кількість відбитих електронів збільшується при збільшенні Z, то на мікрознімках області із великими номерами Z будуть більш світлі порівняно із областями з малими значеннями Z. Виходячи

із означення контрасту, можна записати:

$$C = \frac{S_2 - S_1}{S_2} = \frac{(n_{\Pi PE})_2 - (n_{\Pi PE})_1}{(n_{\Pi PE})_2}$$

тобто експериментально цей тип контрасту реалізується шляхом віднімання сигналів, які надходять із двох точок.

Другий механізм (режим) формування Z-контрасту, пов'язаний із вторинними електронами, називається "режим вторинних електронів". Характерною особливістю є те, що при цьому режимі у формуванні контрасту беруть участь і розсіяні електрони. Якщо порівняти зображення в РЕМ, отримане при використанні ВЕ і ПРЕ, то воно буде набагато якісніше порівняно із зображенням, отриманим лише за допомогою ПРЕ. На мікрознімках, які будуть подані нижче, цей ефект ілюструється. Як і у випадку Z-контрасту, топографічний контраст також може бути реалізований у режимах або лише розсіяних електронів, або розсіяних і вторинних. Топографічний контраст у режимі відбитих електронів має різний характер (складається в основному із світлих та темних ділянок і в дуже малій кількості проміжного (сірого) кольору ділянок).

Добавка ВЕ дає більшу інформацію з точки зору топографії (дозволяє вияснити, чи є та чи інша неоднорідність випуклістю або западиною).

Режими роботи РЕМ

- Відповідно до типів та характеру випромінень у РЕМ реалізується декілька режимів роботи. Зокрема, в межах двох контрастів такими режимами є: хімічний склад (зображення формується лише пружно розсіяними електронами (ПРЕ)); вторинні електрони (зображення формується в основному ВЕ) та топографія.
- На рис.1.15 представлена серія мікрознімків ілюструє зазначені режими роботи. Звертає на себе вагу той факт, що в режимі ВЕ досягається ефект підвищеної інтенсивності зображення порівняно із режимом ПРЕ.

Рисунок 1.18 – Приклади мікрознімків, отриманих методом РЕМ в режимі топографії (лівий нижній кут – а, б і лівий верхній кут – в, г); хімічного складу (правий верхній кут – а - г) та вторинних електронів (лівий верхній і правий нижні кути – а, б; лівий і правий

нижні кути – в, г).

Використання методів ПЕМ і РЕМ для дослідження кристалічної мікроструктури тонких плівок та покриттів

- Інформація, яка отримується цими методами:
- розміри, концентрація і габітус (огранка) кристалічних зерен; процеси їх рекристалізації;
- тип текстури і ступінь монокристалічності плівкового зразка;
- межі зерен, їх характер (мало- чи великокутові), блоки мозаїки (ОКР);
- лінійні дефекти, дислокації, центри макронапружень;
- морфологія зразка, його еволюція в процесі хімічної, температурної і механічної обробок;
- структурні характеристики аморфних і наноматеріалів.
- Можна зробити висновок, що методи ПЕМ і РЕМ забезпечують отримання всього комплексу даних стосовно різних аспектів кристалічної будови.

Теоретичні та експериментальні основи електронографії (ЕГ) 1.1. Будова, загальна характеристика і принцип роботи електронографа (ЕГ)

Раніше відмічалося, що ПЕМ може працювати в режимі дифракції або мікродифракції, але конструктивні особливості не дають можливості забезпечити високу точність визначення міжплощинних відстаней і параметрів гратки. Причина цього у відносно малих діаметрах дифракційних кілець і в їх витягнутості (еліптичності) в одному із напрямів. У електронографі (ЕГ) ці недоліки автоматично відпадають, оскільки цей прилад являє собою ПЕМ, де відсутні проміжні і проекційна лінзи. Це дає можливість розширити поле зору (тобто збільшити діаметр та кількість кілець) і позбавитися їх еліптичності.

Зовнішній вигляд електронного мікроскопа ПЕМ-125К

- основна перевага електронографії полягає в тому, що вона органічно доповнює рентгенографію, оскільки в цих двох методах різні діапазони досліджуваних товщин і розмірів кристалітів (*L*), коли електронограма має кільцевий характер, а рентгенограма не розмита:
- d ≤ 200 нм (0,2 мкм), L ≤ 100 нм (ЕГ);
- d > 1–2 мкм, L ≥ 1000 нм (РГ).

1.2. Принцип роботи ЕГ

Принцип роботи ЕГ полягає в наступному. Сфокусований пучок електронів, сформований освітлювальною системою, спрямовується на зразок (рис. 1.1), де відбувається їх відбиття від кристалографічних площин під різними дифракційними кутами (Θ). Ці кути пов'язані із *d*hkl співвідношеннями (рис. 1.2 а)

$$O'O'' = d_{hkl}\cos(\frac{\pi}{2} - \Theta) = d_{hkl}\sin\Theta, \quad OO'' = 2d_{hkl}\sin\Theta.$$

Рисунок 1.1 – Хід електронних променів у електронографі:

- 1 електронна гармата,
- 2 конденсорна лінза, 3 зразок, 4- екран,
- L відстань між зразком та екраном

Рисунок 1.2 – Розсіювання електронних хвиль на кристалографічних

площинах: а – до отримання формули Бреггів; б – схема формування симетричних точкових дифракційних відбиттів, які у своїй сукупності утворюють кільце (1, 2 – номери площин; 1', 2' - рефлекси від площин 1, 2; 3', 4´- рефлекс від площин, симетричних 1 і 2). Θ – кут ковзання, 2Θ – кут дифракції

1.2. Основи ЕГ
Перший етап
Рисунок 1.3 – До отримання
співвідношення для сталої приладу

$$tg 2\Theta = \frac{R_{hkl}}{L}$$
.
 $tg 2\Theta \cong 2 \sin \Theta \cong 2\Theta \cong \frac{R}{L}$.
 $d_{hkl} 2\Theta \cong n\lambda \Rightarrow 2\Theta \cong \frac{n\lambda}{d_{hkl}}$.

$$2R_{hkl}d_{hkl}\cong 2L\lambda=C$$

$$D_{hkl}d_{hkl}\cong 2L\lambda=C.$$

Другий етап

Таким чином, знайшовши сталу приладу, ми пройшли перший етап фазового аналізу. Другим етапом буде розрахунок dhkl невідомого зразка на основі вимірювання Dhkl за допомогою отриманої електронограми і другої формули ЕГ

$$d_{hkl} = \frac{C}{D_{hkl}}.$$

Третій етап Квадратичні форми

• кубічна сингонія : $\frac{1}{d_{hkl}^2} = \frac{h^2 + k^2 + l^2}{a_{kll}^2}$ тетрагональна сингонія: $\frac{1}{d_{hkl}^2} = \frac{h^2 + k^2}{a_{hko}^2} + \frac{l^2}{c_{oul}^2}$

гексагональна сингонія :

$$\frac{1}{d_{hkl}^2} = \frac{4}{3} \frac{h^2 + hk + k^2}{a_{hko}^2} + \frac{l^2}{c_{ool}^2}$$

Рисунок 1.4 — Типи кристалічних ґраток кубічної сингонії: а — ПК, б — ОЦК, в — ГЦК

Третя формула електронографії для кубічної сингонії

$$\frac{1}{d_{h_1k_1l_1}^2} : \frac{1}{d_{h_2k_2l_2}^2} : \frac{1}{d_{h_3k_3l_3}^2} : \dots =$$

= $(h_1^2 + k_1^2 + l_1^2) : (h_2^2 + k_2^2 + l_2^2) : (h_3^2 + k_3^2 + l_3^2) : \dots,$

ПК, ОЦК: 1, 2, 3, 4, 5, 6, 8, 9, ... ГЦК: 1, 1,33; 2,66; 3,67; 4; 5,33; ...

	ПК			ОЦК			ГЦК		
Nº	hkl	$h^2 + k^2 + l^2$	$\frac{h_i^2 + k_i^2 + l_i^2}{h_k^2 + k_k^2 + l_k^2}$	hkl	$h^2 + k^2 + l^2$	$\frac{h_i^2 + k_i^2 + l_i^2}{h_k^2 + k_k^2 + l_k^2}$	hkl	$h^2 + k^2 + l^2$	$\frac{h_i^2 + k_i^2 + l_i^2}{h_k^2 + k_k^2 + l_k^2}$
1	100	1	0,50	110	2	0,50	111	3	0,75
2	110	2	0,68	200	4	0,68	200	4	0,50
3	111	3	0,75	211	6	0,75	220	8	0,72
4	200	4	0,80	220	8	0,80	311	11	0,91
5	210	5	0,83	310	10	0,83	222	12	0,75
6	211	6	0,75	222	12	0,85	400	16	0,78
7	220	8	0,89	321	14	0,87	331	19	0,80
8	300 або 221	9	-	400	16	-	420	20	-

Рисунок 1.6 – Схема електронограм від ПК (а), ОЦК (б) і ГЦК (в) ґраток

Четверта формула ЕГ

кубічна сингонія
$$a_{hkl} = d_{hkl} \sqrt{h^2 + k^2 + l^2}$$

тетрагональна сингонія

$$a_{hk0} = d_{hk0}\sqrt{h^2 + k^2}$$
 i $c_{00l} = l \cdot d_{00l}$

гексагональна сингонія

Г

$$a_{hk0} = 2d_{hk0} \frac{\sqrt{3}}{3} \sqrt{h^2 + hk + k^2} \ i \ c_{00l} = l \cdot d_{00l}$$

Рисунок1.5 – Електронограми від різних ґраток кубічної сингонії: а, б – ПК (Cr2O3 і CrO3); в – ОЦК (Cr); г – ГЦК (Ni)

1.3. Основи рентгенографії

- Діапазон довжин хвиль рентгенівських променів Δλ=10-8 – 10-14 м (10 - 10-5 нм) дозволяє отримувати дифракційні картини від кристалічних зразків. До цього діапазон своїми довжинами хвиль потрапляє як гальмівне (суцільний спектр), так і характеристичне (лінійчастий спектр).
- В основу РГ покладено фактично ті самі рівняння, що й у випадку ЕГ, але суттєва відмінність полягає у відсутності поняття стала приладу, оскільки рентгенівські кути дифракції можуть становити величину порядку 10 і 100 градусів, що забезпечує високу точність розрахунків sin Ø.

Конструкція і принцип роботи

рентгенівського дифрактометра :

Рисунок 1.6 – Конструкція рентгенівської трубки: 1 – нитка розжарювання (до 2800 К); 2 – катод; 3, 5 – фокусуючі електроди; 4 – фокусуючі котушки; 6 – антикатод; 7 – корпус анода; 8 – скляна колба (вакуум 10⁻⁴ – 10⁻⁵ Па); 9 – система охолодження анода; 10 – вікно для пропускання рентгенівських променів (скло С47-1, Ве)

Скориставшись рівнянням Бреггів, ми можемо записати

$$\frac{4\sin^2\Theta}{\lambda^2} = \frac{1}{d_{hkl}^2} \qquad 2d_{hkl}\sin\Theta = n\lambda,$$

а попереднє рівняння подати у вигляді

$$\sin^2 \Theta_1 : \sin^2 \Theta_2 : \sin^2 \Theta_3 : \dots = (h_1^2 + k_1^2 + l_1^2):$$
$$: (h_2^2 + k_2^2 + l_2^2) : (h_3^2 + k_3^2 + l_3^2) : \dots$$

 Це друге рівняння рентгенографії, яке відіграє таку саму роль, як і в електронографії:

$$\frac{1}{d_{h_1k_1l_1}^2} : \frac{1}{d_{h_2k_2l_2}^2} : \frac{1}{d_{h_3k_3l_3}^2} : \dots =$$

= $(h_1^2 + k_1^2 + l_1^2) : (h_2^2 + k_2^2 + l_2^2) : (h_3^2 + k_3^2 + l_3^2) : \dots,$

- Як уже вказувалось, в основі рентгенографії лежать практично ті ж співвідношення, що для електронографії – рівняння Бреггів та квадратичні форми (див. лабораторну роботу):
- деа, С параметри решітки.
- Для ОЦК решітки h + k + I парне число і тому N приймає значення N = 2, 4, 6, 8, 10, 12, 14, 16, ….
- Для ГЦК решітки h, k, l повинні бути або всі парні, або непарні, тобто N = 3, 4, 8, 11, 12, 16, 19, 20, 24.....
- Таким чином, аналізуючи вказані послідовності, можна індексувати рентгенограми від невідомої речовини. Першим етапом індексування ліній інтерференції на дифракційній картині (рентгенограмі) є визначення індексів Міллера h, k, l. Знаючи dhkl, λ та (hkl), можна провести розрахунки ahkl, Δa та Δacp.

Рисунок 1.7 – Приклад рентгенограм від полікристалічних зразків ОЦК-Сг (а) і ГЦК-Си (б)

